Sand screen selection by sand retention test: a review of factors affecting sand control design

Author:

Khan Javed Akbar,Zainal Aimi Zahraa,Idris Khairul Nizam,Herman Angga Pratama,Cai Baoping,Maoinser Mohd AzuwanORCID

Abstract

AbstractThe installation of sand screens in open-hole completions in the wellbore is crucial for managing sand production. The main reason for using standalone screens in open-hole completions is their relatively reduced operational complexity compared to other sand control technologies. However, directly applying the screen to the bottom of the hole can lead to an incorrect screen type selection, resulting in an unreliable sand control method. To address this issue, a sand retention test is conducted to evaluate the performance of a standalone screen before field installation. Nevertheless, current sand retention test setups encounter several challenges. These include difficulties in identifying minimum retention requirements, interpreting results in the context of field conditions, and replicating field-specific parameters. The existing sand retention test introduces uncertainties, such as inaccurately replicating field requirements, inconsistent selection of wetting fluids, flow rates, and channel formation, leading to variations in the choice of the optimal screen using this test. In response to these challenges, this study aims to review the sand retention test and propose an improved sand retention method to overcome these problems. The focus of this article is to provide an in-depth analysis of previous sand retention test setups, their contributions to characterizing sand screens, and the parameters utilized in determining test outcomes. Additionally, this review outlines a procedure to investigate the impact of different particle sizes on screen erosion. Key findings emphasize the importance of using high-quality materials, proper screen design to resist damage and erosion, achieving acceptable natural packing behind the screen, and considering factors such as geology, wellbore conditions, and installation techniques. The analysis reveals that a high quantity of finer and poorly sorted sand increases sand production. The study recommends performing a sand pack test closer to reservoir conditions for better evaluation. Premium sand screens demonstrate the highest retention capacity, followed by metal mesh and wire-wrapped screens. Additionally, geotextiles show potential for enhancing sand retention, and screen design affects erosion resistance and service life.

Funder

Malaysia-Thailand Joint Authority

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3