A Comparative Study of the Effect of Graphene Oxide, Graphitic Carbon Nitride, and Their Composite on the Photocatalytic Activity of Cu3SnS4

Author:

Olatunde Olalekan C.ORCID,Onwudiwe Damian C.ORCID

Abstract

Photocatalysis has shown high potential in dealing with the ever-broadening problem of wastewater treatment, escalated by the increasing level of recalcitrant chemicals often referred to as emerging contaminants. In this study, the effect of support material on the photocatalytic activity of copper tin sulfide (Cu3SnS4) nanoparticles for the degradation of tetracycline as an emerging contaminant is presented. Graphene oxide, protonated graphitic carbon nitride, and a composite of graphitic carbon nitride and graphene oxide were explored as support materials for Cu3SnS4 nanoparticles. The nanoparticles were incorporated with the different carbonaceous substrates to afford graphene-supported Cu3SnS4 (GO-CTS), protonated graphitic carbon nitride-supported Cu3SnS4 (PCN-CTS), and graphene oxide/protonated graphitic carbon nitride-supported Cu3SnS4 (GO/PCN-CTS). Physicochemical, structural, and optical properties of the prepared nanocomposites were characterized using techniques such as Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis near infrared, and fluorescence spectrophotometry. The compositing of the Cu3SnS4 nanoparticles on the support materials was confirmed by the characterization techniques, and the optical properties of the composites were found to be influenced by the nature of the support material. The incorporation of CTS into the support materials resulted in a reduction in band gap energy with evaluated band gaps of 1.65, 1.46, 1.43 eV, and 1.16 eV. The reduction in band gap energy suggests the potential of the composites for enhanced photocatalytic activity. From the photocatalytic study, the degradation efficiency of tetracycline by CTS, PCN-CTS, GO-CTS, and PC/GO-CTS was 74.1, 85.2, 90.9, and 96.5%, respectively. All the composites showed enhanced activity compared to pristine CTS, and the existence of a synergy between GO and PCN when both were employed as support materials was observed. Based on the charge carrier recombination characteristics and the band edge potential calculations from the composites, a possible mechanism of action of each composite was proposed. This study therefore confirms the possibility of modulating the mechanism of action and subsequently the efficiency of semiconductor materials by altering the nature of the support material.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3