Visible active narrow/narrow band gap CuO/Cu2SnS3 nanoheterostructures as efficient nanophotocatalysts

Author:

Arafa Mona1,Abdelmonem Yasser1,Madkour Metwally2ORCID

Affiliation:

1. Chemistry Department, Faculty of Science, Menoufia University 1 , 32511 Shebin El-Kom, Egypt

2. Chemistry Department, Faculty of Science, Arish University 2 , Al-Arish 45511, Egypt

Abstract

Binary metal oxide/ternary metal sulphide based nanoheterostructures, such as CuO/Cu2SnS3, were prepared via a modified hydrothermal route. The prepared nanoheterostructures were characterized using scanning electron microscopy, x-ray powder diffractometer, XPS, ultraviolet–visible spectroscopy, isoelectric point, and Brunauer-Emmett-Teller techniques. The XPS results revealed the successful incorporation of Cu+/Cu2+ with different ratios. The prepared heterostructures were tested as solar active photocatalysts for Methylene Blue (MB) photodegradation. The CuO/Cu2SnS3 (20% Cu2SnS3/80% CuO) photocatalytic results exhibited a high photodegradation efficiency (90%) after 60 min. In addition, the photonic efficiency values (ζ) were calculated to be 15.9%, 44%, and 61.4% for CuO, Cu2SnS3, and CuO/Cu2SnS3 nanoheterostructures, respectively. In addition, the reactive oxidative species were detected by the trapping experiments to get a clear insight about the photocatalytic reactivity factors. Total organic carbon (TOC) was conducted to confirm the safe photodegradation of MB dye without the formation of colorless hazardous (95.5% TOC removal). Based on the electronic band structure, the mechanism of photodegradation was investigated. The currently investigated heterostructure system is narrow/narrow bandgap, which fulfills the two contradictory conditions in terms of high solar photocatalytic activity and overcomes the rapid recombination process.

Publisher

AIP Publishing

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3