An Advanced Approach for MgZnAl-LDH Catalysts Synthesis Used in Claisen-Schmidt Condensation

Author:

Zăvoianu RodicaORCID,Mihăilă Silvana-Denisa,Cojocaru BogdanORCID,Tudorache Mădălina,Pârvulescu Vasile I.,Pavel Octavian DumitruORCID,Oikonomopoulos SolonORCID,Jacobsen Elisabeth EgholmORCID

Abstract

Using organic-base tetramethylammonium hydroxide (TMAH) is a viable, cheap, and fast option for the synthesis of MgZnAl-LDH-type materials by both co-precipitation and mechano-chemical methods. TMAH presents several advantages, such as the smaller quantity of water required in the washing step compared to the use of inorganic alkalis, the prevention of LDH contamination with alkali cations, and its action as a template molecule in texture tailoring. It also has disadvantages, such as its presence in small quantities in the resulting layered materials. Regardless of the use of organic/inorganic bases and co-precipitation/mechano-chemical methods, zincite stable phase was found in all the synthesized solids. The basicity of catalysts followed the trend: mixed oxides > reconstructed > parent LDH. The memory effect of LDH was supported only by the presence of Mg and Al cations, while Zn remained as a zincite stable phase. The catalytic activities for Claisen-Schmidt condensation of benzaldehyde with cyclohexanone provided values higher than 90% after 2 h, with a total selectivity toward 2,6-dibenzylidenecyclohexanone, while self-condensation of cyclohexanone yielded no more than 7.29% after 5 h. These behaviors depended on catalyst basicity as well as on the planar rigidity of the compound.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3