Mixed Oxides as Catalysts for the Condensation of Cyclohexanol and Benzaldehyde to Obtain a Claisen–Schmidt Condensation Product

Author:

Stoylkova Tanya1,Stanimirova Tsveta1ORCID,Chanev Christo D.2,Petrova Petya3,Metodieva Kristina1

Affiliation:

1. Department of Mineralogy, Petrology and Economic Geology, Faculty of Geology and Geography, University of Sofia “St. Kliment Ohridski”, 15, Tsar Osvoboditel Blvd., 1504 Sofia, Bulgaria

2. Department of Organic Chemistry, Faculty of Chemistry and Pharmacy, University of Sofia “St. Kliment Ohridski”, 1, James Bourchier Blvd., 1164 Sofia, Bulgaria

3. Institute of Catalysis, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Block 11, 1113 Sofia, Bulgaria

Abstract

Acid–base M2+MgAlO and M2+AlO mixed oxides (where M2+ = Mg, Cu, Co, Zn, and Ni) were obtained by thermal decomposition of the corresponding layered double hydroxide (LDH) precursors and used as catalysts for cyclohexanol and benzaldehyde condensation under solvent-free conditions. The catalysts were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and temperature-programmed desorption of CO2 (TPD-CO2). Gas chromatography–mass spectroscopy (GC/MS) was used for the identification and quantification of the product mixtures. In the reaction of cyclohexanol and benzaldehyde on M2+MgAlO and MgAlO catalysts, a 2,6-dibenzylidene-cyclohexanone was obtained as the main product as a result of consecutive one-pot dehydrogenation of cyclohexanol to cyclohexanone and subsequent Claisen–Schmidt condensation. In the reaction mixture obtained in the presence of NiAlO, CoAlO, and ZnAlO catalysts, a cyclohexyl ester of 6-hydroxyhexanoic acid was detected together with the main product. This is most likely a by-product obtained after the oxidation, ring opening, and subsequent esterification of the cyclohexanol.

Funder

European Union-NextGeneration EU through the National Recovery and Resilience Plan of the Republic of Bulgaria

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3