Abstract
Considerable efforts have been made in recent years to identify an optimal treatment method for the removal of antibiotics from wastewaters. A series of supramolecular organic-inorganic magnetic composites containing Zn-modified MgAl LDHs and Cu-phthalocyanine as photosensitizers were prepared with the aim of removing β-lactam antibiotics from aqueous solutions. The characterization of these materials confirmed the anchorage of Cu-phthalocyanine onto the edges of the LDH lamellae, with a negligible part inserted in the interlayer space. The removal of the β-lactam antibiotics occurred via concerted adsorption and photocatalytic degradation. The efficiency of the composites depended on (i) the LDH: magnetic nanoparticle (MP) ratio, which was strongly correlated with the textural properties of the catalysts, and (ii) the phthalocyanine loading in the final composite. The maximum efficiency was achieved with a removal of ~93% of the antibiotics after 2 h of reaction.
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献