Simultaneous Determination of Four Catechins in Black Tea via NIR Spectroscopy and Feature Wavelength Selection: A Novel Approach

Author:

Liu Yabing1,Pan Ke1,Liu Zhongyin1,Dai Yuqiao1,Duan Xueyi1,Wang Min1,Shen Qiang1

Affiliation:

1. Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China

Abstract

As a non-destructive, fast, and cost-effective technique, near-infrared (NIR) spectroscopy has been widely used to determine the content of bioactive components in tea. However, due to the similar chemical structures of various catechins in black tea, the NIR spectra of black tea severely overlap in certain bands, causing nonlinear relationships and reducing analytical accuracy. In addition, the number of NIR spectral wavelengths is much larger than that of the modeled samples, and the small-sample learning problem is rather typical. These issues make the use of NIRS to simultaneously determine black tea catechins challenging. To address the above problems, this study innovatively proposed a wavelength selection algorithm based on feature interval combination sensitivity segmentation (FIC-SS). This algorithm extracts wavelengths at both coarse-grained and fine-grained levels, achieving higher accuracy and stability in feature wavelength extraction. On this basis, the study built four simultaneous prediction models for catechins based on extreme learning machines (ELMs), utilizing their powerful nonlinear learning ability and simple model structure to achieve simultaneous and accurate prediction of catechins. The experimental results showed that for the full spectrum, the ELM model has better prediction performance than the partial least squares model for epicatechin (EC), epicatechin gallate (ECG), epigallocatechin (EGC), and epigallocatechin gallate (EGCG). For the feature wavelengths, our proposed FIC-SS-ELM model enjoys higher prediction performance than ELM models based on other wavelength selection algorithms; it can simultaneously and accurately predict the content of EC (Rp2 = 0.91, RMSEP = 0.019), ECG (Rp2 = 0.96, RMSEP = 0.11), EGC (Rp2 = 0.97, RMSEP = 0.15), and EGCG (Rp2 = 0.97, RMSEP = 0.35) in black tea. The results of this study provide a new method for the quantitative determination of the bioactive components of black tea.

Funder

National Natural Science Foundation of China

Central Government Guided the Local Science and Technology Development Fund Project

Guizhou Provincial Science and Technology Foundation

Guizhou Provincial Department of Science and Technology Plan Support Project

NSFC post-funded project from Guizhou Provincial Academy of Agricultural Sciences

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3