Abstract
The epitaxial deposition of a precise number, or even fractions, of monolayers of indium (In)-rich semiconductors onto gallium arsenide (GaAs) substrates enables the creation of quantum dots based on InAs, InGaAs and indium phosphide (InP) for infrared light-emitting and laser diodes and the formation of indium antimonide (InSb)/GaAs strained layer superlattices. Here, a facile method based on energy-dispersive X-ray spectroscopy (EDXS) in a scanning electron microscope (SEM) is presented that allows the indium content of a single semiconductor layer deposited on a gallium arsenide substrate to be measured with relatively high accuracy (±0.7 monolayers). As the procedure works in top-down geometry, where any part of a wafer can be inspected, measuring the In content of the surface layer in one location without destroying it can also be used to map the lateral indium distribution during quantum dot formation and is a method suitable as an in-situ quality control tool for epitaxy.
Subject
General Materials Science,General Chemical Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献