Chemical Structure Comparison via Scanning Electron Microscopy of Spent Commercial Nickel–Metal Hydride Batteries

Author:

Walther Thomas1ORCID

Affiliation:

1. Department of Electronic & Electrical Engineering, University of Sheffield, Mappin Building, Mappin Street, Sheffield S1 3JD, UK

Abstract

Back-scattered electron imaging and X-ray elemental mapping were combined in a tabletop scanning electron microscope (SEM) to investigate cross-sections of three AA-type (mignon) nickel–metal hydride (NiMH) batteries from different manufacturers. All batteries underwent 500–800 charge/discharge cycles and reached their end of lifetime after several years as they could no longer hold any significant electric charge (less than 20% of nominal charge capacity), but none showed any short-circuiting. The types of degradation observed in this field study included electrode swelling, metallic nickel formation and carbon incorporation into pores in the positive electrodes and, in the negative electrodes, metal alloy segregation of different elements such as nickel, lanthanum and, in one case, sodium, as well as grain break-up and pore formation. All these phenomena could readily be observed at rather small magnifications. This will be important for the improvement of NiMH batteries, for which new generations with nominally slightly increased charge capacities are being marketed all the time.

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Bindra, H., and Revankar, S. (2019). Storage and Hybridization of Nuclear Energy, Academic Press.

2. Melhem, Z. (2013). Electricity Transmission, Distribution and Storage Systems, Woodhead Publishing.

3. Aktas, A., and Kircicek, Y. (2021). Solar Hybrid Systems: Design and Application, Academic Press.

4. Nickel–metal hydride: Ready to serve;Stempel;IEEE Spectr.,1998

5. Garche, J. (2009). Encyclopedia of Electrochemical Power Sources, Elsevier.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3