Synthesis of Floral-Shaped Nanosilica from Coal Fly Ash and Its Application for the Remediation of Heavy Metals from Fly Ash Aqueous Solutions

Author:

Yadav Virendra Kumar12ORCID,Amari Abdelfattah34ORCID,Wanale Shivraj Gangadhar5,Osman Haitham3ORCID,Fulekar M. H.567

Affiliation:

1. Department of Biosciences, School of Liberal Arts & Sciences, Mody University of Science and Technology, Sikar 332311, India

2. School of Nanosciences, Central University of Gujarat, Gandhinagar 382030, India

3. Department of Chemical Engineering, College of Engineering, King Khalid University, Abha 61411, Saudi Arabia

4. Research Laboratory of Processes, Energetics, Environment and Electrical Systems, National School of Engineers of Gabes, Gabes University, Gabes 6072, Tunisia

5. School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431603, India

6. Centre of Research for Development, Parul University, Vadodara 391760, India

7. School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, India

Abstract

Every year a large amount of coal fly ash (CFA) is generated and dumped in fly ash ponds. Fly ash has numerous toxic heavy metals, which leads to water pollution due to the percolation of these heavy metals. Heavy metal toxicity has become a major issue for the whole globe. Moreover, CFA has several value-added minerals, such as silica, alumina, and ferrous in large amounts. Therefore, the synthesis of silica nanoparticles from CFA and their application for the removal of toxic heavy metals from fly ash aqueous solution will prove to be an economical and efficient approach. Here, in the present research work, investigators synthesized nanosilica from CFA by alkali dissolution and sol-gel methods and applied them for heavy metal removal. Firstly, CFA was treated with high molar NaOH, along with stirring and heating. Further, the sodium silicate leachate from CFA was treated with dilute HCl till the formation of a white gel at neutral pH. Purification of the nanosilica was achieved by treating with 1M HCl along with stirring followed by calcination at 400 °C for 4 h. The synthesized nanosilica was characterized by UV-Vis, Fourier transform infrared (FTIR), particle size analyzer (PSA), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), electron diffraction spectroscopy (EDS), and high-resolution transmission electron microscope (HR-TEM). The sizes of the floral-shaped nanosilica particles were 20–70 nm, and the purity was 90–95%, as confirmed by microscopy and EDS, respectively. The XRD and FTIR revealed the amorphous nature of nanosilica. Finally, the potential of the nanosilica was assessed for the removal of heavy metals from 20% CFA aqueous solutions in batch experiments. The nanosilica showed about 40–90% removal of heavy metals (Al, Pb, Cd, Cu, Cr, Ni, Co, Zn, Mn) from the fly ash aqueous solution.

Funder

Deanship of Scientific Research at King Khalid University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3