Synthesis and characterization of titanium dioxide nanoparticles from Bacillus subtilis MTCC 8322 and its application for the removal of methylene blue and orange G dyes under UV light and visible light

Author:

Rathore Chandani,Yadav Virendra Kumar,Amari Abdelfattah,Meena Abhishek,Chinedu Egbosiuba Titus,Verma Rakesh Kumar,Mahdhi Noureddine,Choudhary Nisha,Sahoo Dipak Kumar,Chundawat Rajendra Singh,Patel Ashish

Abstract

Over the last decade there has been a huge increase in the green synthesis of nanoparticles. Moreover, there is a continuous increase in harnessing the potential of microorganisms for the development of efficient and biocompatible nanoparticles around the globe. In the present research work, investigators have synthesized TiO2 NPs by harnessing the potential of Bacillus subtilis MTCC 8322 (Gram-positive) bacteria. The formation and confirmation of the TiO2 NPs synthesized by bacteria were carried out by using UV-Vis spectroscopy, Fourier transforms infrared (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDX/EDS). The size of the synthesized TiO2 NPs was 80–120 nm which was spherical to irregular in shape as revealed by SEM. FTIR showed the characteristic bands of Ti-O in the range of 400–550 cm−1 and 924 cm−1 while the band at 2930 cm−1 confirmed the association of bacterial biomolecules with the synthesized TiO2 NPs. XRD showed two major peaks; 27.5° (rutile phase) and 45.6° (anatase phase) for the synthesized TiO2 NPs. Finally, the potential of the synthesized TiO2 NPs was assessed as an antibacterial agent and photocatalyst. The remediation of Methylene blue (MB) and Orange G (OG) dyes was carried out under UV- light and visible light for a contact time of 150–240 min respectively. The removal efficiency for 100 ppm MB dye was 25.75% and for OG dye was 72.24% under UV light, while in visible light, the maximum removal percentage for MB and OG dye was 98.85% and 80.43% respectively at 90 min. Moreover, a kinetic study and adsorption isotherm study were carried out for the removal of both dyes, where the pseudo-first-order for MB dye is 263.269 and 475554.176 mg/g for OG dye. The pseudo-second-order kinetics for MB and OG dye were 188.679 and 1666.667 mg/g respectively. In addition to this, the antibacterial activity of TiO2 NPs was assessed against Bacillus subtilis MTCC 8322 (Gram-positive) and Escherichia coli MTCC 8933 (Gram-negative) where the maximum zone of inhibition in Bacillus subtilis MTCC 8322 was about 12 mm, and for E. coli 16 mm.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference151 articles.

1. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms;Abd_Allah;J. Plant Interact.,2018

2. Use of flame spray pyrolysis technique to synthesize the nanoparticles of titanium dioxide: application on dye-sensitized photovoltaic cells;Aboulouard;Mater Today Proc.,2022

3. Green synthesis of photocatalytic TiO2 nanoparticles for potential application in photochemical degradation of ornidazole;Ahmad;J. Inorg. Organomet. Polym. Mater,2021

4. Biosynthesis of TiO2 nanoparticles using prodigiosin and evaluating its antibacterial activity against biofilm producing MDR-Acinetobacter baumannii AhmedD. M. YaaqoobL. A. Kamaluideen ArifS. 2020

5. A comprehensive method of ion exchange resins regeneration and its optimization for water treatment;Al-Asheh,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3