Phytonanofabrication of Copper Oxide from Albizia saman and Its Potential as an Antimicrobial Agent and Remediation of Congo Red Dye from Wastewater

Author:

Choudhary Nisha1,Chaudhari Jaimina1,Mochi Vidhi1,Patel Pritee1,Ali Daoud2,Alarifi Saud2,Sahoo Dipak Kumar3ORCID,Patel Ashish1ORCID,Yadav Virendra Kumar1ORCID

Affiliation:

1. Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India

2. Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

3. Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA

Abstract

Metal nanoparticle fabrication through plant-based green methods is considered the gold standard among the various synthesis techniques owing to its simplicity, eco-friendliness, ease of use, and the huge diversity of plant species. Copper nanoparticles (CuONPs) have proven their potential in the fields of medicine, agriculture, pharmaceutics, and catalysis, and are being synthesized using various physicochemical and biological methods. Here, the authors have reported on the first-ever use of Albizia saman leaf extract for the development of CuONPs. Phytochemical analysis of the methanolic extracts of the plant exhibited the presence of phenols (32.31%), tannins (12.27%), and flavonoids (16.72%). The phytonutrients existing in leaf extract successfully reduced the copper salt in the CuONPs. A detailed investigation of the synthesized CuONPs was performed using advanced instruments. The UV-Vis spectra exhibited an absorbance peak at 290 nm, while the X-ray diffraction pattern (XRD) revealed that the average crystallite size was about 29.86 nm. Dynamic light scattering (DLS) revealed that the average hydrodynamic size of the CuONPs was 72.3 nm in diameter, while its zeta potential was −0.49, with a negative polarity. Fourier transform infrared spectroscopy showed the major bands in the region of 400 to 1000 cm−1, suggesting the formation of CuONPs, while the band in the region of 1100 to 2600 cm−1 shows the association of plant molecules with the phytonanofabricated CuO particles. Transmission and scanning electron microscopy showed the spherical shape of the CuONPs, whose size was about 20–50 nm. The phytonanofabricated CuO exhibited antibacterial activity by forming a zone of inhibition (ZOI) against Escherichia coli, Staphylococcus aureus, and Candida albicans. The removal efficiency of the CuONPs was 33.33% for Congo Red dye. The removal efficiency of the phytonanofabricated CuO for CR dye was reduced to 16% after the 4th cycle.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3