Airborne Lidar Sampling Pivotal for Accurate Regional AGB Predictions from Multispectral Images in Forest-Savanna Landscapes

Author:

Sagang Le Bienfaiteur T.ORCID,Ploton Pierre,Sonké Bonaventure,Poilvé Hervé,Couteron Pierre,Barbier Nicolas

Abstract

Precise accounting of carbon stocks and fluxes in tropical vegetation using remote sensing approaches remains a challenging exercise, as both signal saturation and ground sampling limitations contribute to inaccurate extrapolations. Airborne LiDAR Scanning (ALS) data can be used as an intermediate level to radically increase sampling and enhance model calibration. Here we tested the potential of using ALS data for upscaling vegetation aboveground biomass (AGB) from field plots to a forest-savanna transitional landscape in the Guineo–Congolian region in Cameroon, using either a design-based approach or a model-based approach leveraging multispectral satellite imagery. Two sets of reference data were used: (1) AGB values collected from 62 0.16-ha plots distributed both in forests and savannas; and (2) an AGB map generated form ALS data. In the model-based approach, we trained Random Forest models using predictors from recent sensors of varying spectral and spatial resolutions (Spot 6/7, Landsat 8, and Sentinel 2), along with biophysical predictors derived after pre-processing into the Overland processing chain, following a forward variable selection procedure with a spatial 4-folds cross validation. The models calibrated with field plots lead to a systematic overestimation in AGB density estimates and a root mean squared prediction error (RMSPE) of up to 65 Mg.ha−1 (90%), whereas calibration with ALS lead to low bias and a drop of ~30% in RMSPE (down to 43 Mg.ha−1, 58%) with little effect of the satellite sensor used. Decomposing bias along the AGB density range, we show that multispectral images can (in some specific cases) be used for unbiased prediction at landscape scale on the basis of ALS-calibrated statistical models. However, our results also confirm that, whatever the spectral indices used and attention paid to sensor quality and pre-processing, the signal is not sufficient to warrant accurate pixelwise predictions, because of large relative RMSPE, especially above (200–250 t/ha). The design-based approach, for which average AGB density values were attributed to mapped land cover classes, proved to be a simple and reliable alternative (for landscape to region level estimations), when trained with dense ALS samples.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3