Assessing the Predictive Power of Democratic Republic of Congo’s National Spaceborne Biomass Map over Independent Test Samples

Author:

Lamulamu Augustin,Ploton Pierre,Birigazzi Luca,Xu Liang,Saatchi Sassan,Kibambe Lubamba Jean-Paul

Abstract

Remotely sensed maps of forest carbon stocks have enormous potential for supporting greenhouse gas (GHG) inventory and monitoring in tropical countries. However, most countries have not used maps as the reference data for GHG inventory due to the lack of confidence in the accuracy of maps and of data to perform local validation. Here, we use the first national forest inventory (NFI) data of the Democratic Republic of Congo to perform an independent assessment of the country’s latest national spaceborne carbon stocks map. We compared plot-to-plot variations and areal estimates of forest aboveground biomass (AGB) derived from NFI data and from the map across jurisdictional and ecological domains. Across all plots, map predictions were nearly unbiased and captured c. 60% of the variation in NFI plots AGB. Map performance was not uniform along the AGB gradient, and saturated around c. 290 Mg ha−1, increasingly underestimating forest AGB above this threshold. Splitting NFI plots by land cover types, we found map predictions unbiased in the dominant terra firme Humid forest class, while plot-to-plot variations were poorly captured (R2 of c. 0.33, or c. 0.20 after excluding disturbed plots). In contrast, map predictions underestimated AGB by c. 33% in the small AGB woodland savanna class but captured a much greater share of plot-to-plot AGB variation (R2 of c. 0.41, or 0.58 after excluding disturbed plots). Areal estimates from the map and NFI data depicted a similar trend with a slightly smaller (but statistically indiscernible) mean AGB from the map across the entire study area (i.e., 252.7 vs. 280.6 Mg ha−1), owing to the underestimation of mean AGB in the woodland savanna domain (31.8 vs. 57.3 Mg ha−1), which was broadly consistent with the results obtained at the provincial level. This study provides insights and outlooks for country-wide AGB mapping efforts in the tropics and the computation of emission factors in Democratic Republic of Congo for carbon monitoring initiatives.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference55 articles.

1. The tropical forest carbon cycle and climate change

2. Congo Basin forest loss dominated by increasing smallholder clearing

3. Niveau d’Emissions de Référence Des Forêts;Ministère de l’Environnement et Développement Durable,2018

4. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables,2017

5. Dix Ans de REDD+ Dans Un Contexte Politique Changeant En République Démocratique Du Congo;Kengoum Djiegni,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3