A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study

Author:

Rice Ilunga Kajila1ORCID,Zhu Hanhua1,Zhang Cunquan2,Tapa Arnauld Robert3

Affiliation:

1. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China

2. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China

3. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China

Abstract

In Lubumbashi, the capital of Haut Katanga in the Democratic Republic of the Congo (DR Congo), diesel power plants are a common source of electricity. The need to utilize local renewable energy sources in DR Congo has increased due to the unreliability of the state grid and the rising cost of running diesel generators. Solar photovoltaic (PV) panels and batteries, in particular, have recently recorded significant price drops. It is important for operators and suppliers to choose optimal generators together with a renewable energy system to lessen the energy deficit. Diesel generators are still widely used in DRC, but their efficiency pales in contrast to that of more recent power facilities. Consuming fossil fuels results in high expenses for upkeep and operation, in addition to severe environmental damage. This study assessed the feasibility of using local weather and technical data to evaluate the efficiency of a diesel power plant hybridized with a PV system. The Hybrid Optimization Model for Electric Renewable (HOMER) simulations suggest that the hybrid system schedule is preferable due to its many economic and environmental advantages for the local community and its inhabitants. The promotion of such a hybrid system may encourage the sustainable economic development of a stable source of electricity for the Congo Region.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3