Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan

Author:

Rakhimova Moldir,Liu TieORCID,Bissenbayeva Sanim,Mukanov Yerbolat,Gafforov Khusen Sh.ORCID,Bekpergenova ZhuldyzayORCID,Gulakhmadov AminjonORCID

Abstract

The variations of climate and water resources in the Buqtyrma River Basin (BRB), which is located at the cross-section of the Altai Mountains, Eurasian Steppe and Tian Shan Mountains, have a great significance for agriculture and ecosystems in the region. Changing climatic conditions will change the hydrological cycle in the whole basin. In this study, we examined the historical trends and change points of the climate and hydrological variables, the contributions of climate change and human activities to runoff changes, and the relative changes in the runoff to the precipitation and potential evapotranspiration from 1950 to 2015 by using the Mann–Kendall trend test, Pettitt test, double cumulative curve and elasticities methods. In addition, a multi-model ensemble (MME) of the six general circulation models (GCMs) for two future periods (2036–2065 and 2071–2100) was assessed to estimate the spatio-temporal variations in precipitation and temperature under two representative concentration pathways (RCPs 4.5 and 8.5) scenarios. Our study detected that the runoff change-point occurred in 1982. The impacts induced by climate change on runoff change were as follows—70% in the upstream, 62.11% in the midstream and 15.34% in the downstream area. The impacts of human activity on runoff change were greater in the downstream area (84.66%) than in the upstream and midstream areas. A continuously increasing trend was indicated regarding average annual temperature under RCP 4.5 (from 0.37 to 0.33 °C/decade) and under RCP 8.5 (from 0.50 to 0.61 °C/decade) during two future periods. Additionally, an increasing trend in predicted precipitation was exhibited under RCP 4.5 (13.6% and 19.9%) and under RCP 8.5 (10.5% and 18.1%) during both future periods. The results of the relative runoff changes to the predicted precipitation and potential evapotranspiration were expected to increase during two future time periods under RCP 4.5 (18.53% and 25.40%) and under RCP 8.5 (8.91% and 13.38%) relative to the base period. The present work can provide a reference for the utilization and management of regional water resources and for ecological environment protection.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3