Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review

Author:

Price Katie1

Affiliation:

1. US Environmental Protection Agency, USA,

Abstract

Baseflow is the portion of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways. Understanding baseflow processes is critical to issues of water quality, supply, and habitat. This review synthesizes the body of global literature investigating relationships between baseflow and watershed characteristics of geomorphology, soil, and land use, as well as the potential effects of climate change, with an emphasis on humid, tropical and temperate (non-snowpackdominated) regions. Such factors are key controls on baseflow through their influence on infiltration, rates of water removal from the catchment, and subsurface storage properties. The literature shows that there is much that remains to be resolved in gaining a solid understanding of the influence of watershed characteristics on baseflow. While it is clear that watershed geomorphology influences baseflow, there is no consensus on which geomorphic parameters are most closely linked to subsurface storage and baseflow. Many studies associate higher watershed forest cover with lower baseflows, attributed to high evapotranspiration rates of forests, while other studies indicate increased baseflow with higher watershed forest cover due to higher infiltration and recharge of subsurface storage. The demonstrated effects of agriculture and urbanization are also inconsistent, due to varied additions of imported water and extremely variable background conditions. This review underscores the need for more research that addresses multiple aspects of the watershed system in explaining baseflows, and for methodological consistency to allow for more fruitful comparisons across case studies. These needs are of immediate demand, given scientific and management emphasis on environmental flows required for maintenance of key ecosystem services.

Publisher

SAGE Publications

Subject

General Earth and Planetary Sciences,Earth and Planetary Sciences (miscellaneous),Geography, Planning and Development

Reference224 articles.

1. Toward a Generalization of the TOPMODEL Concepts: Topographic Indices of Hydrological Similarity

2. Estimating 7Q10 Confidence Limits from Data: A Bootstrap Approach

3. Interpretation of recession flow

4. Appleyard SJ, Davidson WA, and Commander DP ( 1999) The effects of urban development on the utilisation of groundwater resources in Perth, Western Australia. In: Chilton J (ed.) Groundwater in the Urban Environment: Selected City Profiles. Rotterdam: A.A. Balkema , 97-104.

5. The impact of geological control on flow accretion in lowland permeable catchments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3