Detection and Tracking of Moving Pedestrians with a Small Unmanned Aerial Vehicle

Author:

Yeom Seokwon,Cho In-Jun

Abstract

Small unmanned aircraft vehicles (SUAVs) or drones are very useful for visual detection and tracking due to their efficiency in capturing scenes. This paper addresses the detection and tracking of moving pedestrians with an SUAV. The detection step consists of frame subtraction, followed by thresholding, morphological filter, and false alarm reduction, taking into consideration the true size of targets. The center of the detected area is input to the next tracking stage. Interacting multiple model (IMM) filtering estimates the state of vectors and covariance matrices, using multiple modes of Kalman filtering. In the experiments, a dozen people and one car are captured by a stationary drone above the road. The Kalman filter and the IMM filter with two or three modes are compared in the accuracy of the state estimation. The root-mean squared errors (RMSE) of position and velocity are obtained for each target and show the good accuracy in detecting and tracking the target position—the average detection rate is 96.5%. When the two-mode IMM filter is used, the minimum average position and velocity RMSE obtained are around 0.8 m and 0.59 m/s, respectively.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flight Information Access When Operating a Small Drone;2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE);2023-08-25

2. Experimental Characterization of Composite-Printed Materials for the Production of Multirotor UAV Airframe Parts;Materials;2023-07-18

3. Real-Time Traffic Flow Management using OpenCV;2023 3rd International Conference on Intelligent Technologies (CONIT);2023-06-23

4. Using drone technology to collect school transportation data;Travel Behaviour and Society;2023-04

5. AERO: AI-Enabled Remote Sensing Observation with Onboard Edge Computing in UAVs;Remote Sensing;2023-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3