24-Epibrassinolide Promotes Fatty Acid Accumulation and the Expression of Related Genes in Styrax tonkinensis Seeds

Author:

Chen ChenORCID,Chen HongORCID,Han Chao,Liu Zemao,Yu FangyuanORCID,Wu QikuiORCID

Abstract

Styrax tonkinensis, whose seeds are rich in unsaturated fatty acids (UFAs), is a high oil value tree species, and the seed oil has perfect biodiesel properties. Therefore, the elucidation of the effect of 24-epibrassinolide (EBL) on fatty acid (FA) concentration and the expression of FA biosynthesis-related genes is critical for deeply studying the seed oil in S. tonkinensis. In this study, we aimed to investigate the changing trend of FA concentration and composition and identify candidate genes involved in FA biosynthesis under EBL treatment using transcriptome sequencing and GC-MS. The results showed that 5 μmol/L of EBL (EBL5) boosted the accumulation of FA and had the hugest effect on FA concentration at 70 days after flowering (DAF). A total of 20 FAs were identified; among them, palmitic acid, oleic acid, linoleic acid, and linolenic acid were the main components. In total, 117,904 unigenes were detected, and the average length was 1120 bp. Among them, 1205 unigenes were assigned to ‘lipid translations and metabolism’ in COG categories, while 290 unigenes were assigned to ‘biosynthesis of unsaturated fatty acid’ in KEGG categories. Twelve important genes related to FA biosynthesis were identified, and their expression levels were confirmed by quantitative real-time PCR. KAR, KASIII, and accA, encoding FA biosynthesis-related enzymes, all expressed the highest at 70 DAF, which was coincident with a rapid rise in FA concentration during seed development. FAD2 and FATB conduced to UFA and saturated fatty acids (SFA) accumulation, respectively. EBL5 induced the expression of FA biosynthesis-related genes. The concentration of FA was increased after EBL5 application, and EBL5 also enhanced the enzyme activity by promoting the expression of genes related to FA biosynthesis. Our research could provide a reference for understanding the FA biosynthesis of S. tonkinensis seeds at physiological and molecular levels.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3