Error Characteristics and Scale Dependence of Current Satellite Precipitation Estimates Products in Hydrological Modeling

Author:

Zhang YuhangORCID,Ye Aizhong,Nguyen PhuORCID,Analui Bita,Sorooshian Soroosh,Hsu Kuolin

Abstract

Satellite precipitation estimates (SPEs) are promising alternatives to gauge observations for hydrological applications (e.g., streamflow simulation), especially in remote areas with sparse observation networks. However, the existing SPEs products are still biased due to imperfections in retrieval algorithms, data sources and post-processing, which makes the effective use of SPEs a challenge, especially at different spatial and temporal scales. In this study, we used a distributed hydrological model to evaluate the simulated discharge from eight quasi-global SPEs at different spatial scales and explored their potential scale effects of SPEs on a cascade of basins ranging from approximately 100 to 130,000 km2. The results indicate that, regardless of the difference in the accuracy of various SPEs, there is indeed a scale effect in their application in discharge simulation. Specifically, when the catchment area is larger than 20,000 km2, the overall performance of discharge simulation emerges an ascending trend with the increase of catchment area due to the river routing and spatial averaging. Whereas below 20,000 km2, the discharge simulation capability of the SPEs is more randomized and relies heavily on local precipitation accuracy. Our study also highlights the need to evaluate SPEs or other precipitation products (e.g., merge product or reanalysis data) not only at the limited station scale, but also at a finer scale depending on the practical application requirements. Here we have verified that the existing SPEs are scale-dependent in hydrological simulation, and they are not enough to be directly used in very fine scale distributed hydrological simulations (e.g., flash flood). More advanced retrieval algorithms, data sources and bias correction methods are needed to further improve the overall quality of SPEs.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3