A Method for Spatiotemporally Merging Multi-Source Precipitation Based on Deep Learning

Author:

Fang Wei12ORCID,Qin Hui12ORCID,Liu Guanjun12,Yang Xin12,Xu Zhanxing123,Jia Benjun4,Zhang Qianyi12

Affiliation:

1. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

2. Hubei Provincial Key Laboratory of Digital Watershed Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China

3. Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China

4. Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, China Yangtze Power Co., Ltd., Yichang 443000, China

Abstract

Reliable precipitation data are essential for studying water cycle patterns and climate change. However, there are always temporal or spatial errors in precipitation data from various sources. Most precipitation fusion methods are influenced by high-dimensional input features and do not make good use of the spatial correlation between precipitation and environmental variables. Thus, this study proposed a novel multi-source precipitation spatiotemporal fusion method for improving the spatiotemporal accuracy of precipitation. Specifically, the attention mechanism was used to first select critical input information to dimensionalize the inputs, and the Convolutional long-short-term memory network (ConvLSTM) was used to merge precipitation products and environmental variables spatiotemporally. The Yalong River in the southeastern part of the Tibetan Plateau was used as the case study area. The results show that: (1) Compared with the original precipitation products (IMERG, ERA5 and CHIRPS), the proposed method has optimal accuracy and good robustness, and its correlation coefficient (CC) reaches 0.853, its root mean square coefficient (RMSE) decreases to 3.53 mm/d and its mean absolute error (MAE) decreases to 1.33 mm/d. (2) The proposed method can reduce errors under different precipitation intensities and greatly improve the detection capability for strong precipitation. (3) The merged precipitation generated by the proposed method can be used to describe the rainfall–runoff relationship and has good applicability. The proposed method may greatly improve the spatiotemporal accuracy of precipitation in complex terrain areas, which is important for scientific management and the allocation of water resources.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3