Changes in Extreme Precipitation across 30 Global River Basins

Author:

Feng Xin,Wang Zhaoli,Wu XushuORCID,Yin Jiabo,Qian Shuni,Zhan Jie

Abstract

Extreme precipitation can cause disasters such as floods, landslides and crop destruction. A further study on extreme precipitation is essential for enabling reliable projections of future changes. In this study, the trends and frequency distribution changes in extreme precipitation across different major river basins around the world during 1960–2011 were examined based on two of the latest observational data sets respectively collected from 110,000 and 26,592 global meteorological stations. The results showed that approximately a quarter of basins have experienced statistically significant increase in maximum consecutive one-day, three-day and five-day precipitation (RX1day, RX3day and RX5day, respectively). In particular, dramatic increases were found in the recent decade for the Syr Darya River basin (SDR) and Amu Darya River basin (ADR) in the Middle East, while a decrease in RX3day and RX5day were seen over the Amur River basin in East Asia. One third of basins showed remarkable changes in frequency distributions of the three indices, and in most cases the distributions shifted toward larger amounts of extreme precipitation. Relative to the subperiod of 1960–1984, wider range of the three indices over SDR and ADR were detected for 1985–2011, indicating intensification along with larger fluctuations of extreme precipitation. However, some basins have frequency distributions shifting toward smaller amounts of RX3day and RX5day, such as the Columbia River basin and the Yellow River basin. The study has potential to provide the most up-to-date and comprehensive global picture of extreme precipitation, which help guide wiser public policies in future to mitigate the effects of these changes across global river basins.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Water Resource Science and Technology Innovation Program of Guangdong Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3