Provision of Desalinated Irrigation Water by the Desalination of Groundwater Abstracted from a Saline Aquifer

Author:

Antia David D. J.ORCID

Abstract

Globally, about 54 million ha of cropland are irrigated with saline water. Globally, the soils associated with about 1 billion ha are affected by salinization. A small decrease in irrigation water salinity (and soil salinity) can result in a disproportionally large increase in crop yield. This study uses a zero-valent iron desalination reactor to effect surface processing of ground water, obtained from an aquifer, to partially desalinate the water. The product water can be used for irrigation, or it can be reinjected into a saline aquifer, to dilute the aquifer water salinity (as part of an aquifer water quality management program), or it can be injected as low-salinity water into an aquifer to provide a recharge barrier to protect against seawater intrusion. The saline water used in this study is processed in a batch flow, bubble column, static bed, diffusion reactor train (0.24 m3), with a processing capacity of 1.7–1.9 m3 d−1 and a processing duration of 3 h. The reactor contained 0.4 kg Fe0. A total of 70 batches of saline water (average 6.9 g NaCl L−1; range: 2.66 to 30.5 g NaCl L−1) were processed sequentially using a single Fe0 charge, without loss of activity. The average desalination was 24.5%. The reactor used a catalytic pressure swing adsorption–desorption process. The trial results were analysed with respect to Na+ ion removal, Cl− ion removal, and the impact of adding trains. The reactor train was then repurposed, using n-Fe0 and emulsified m-Fe0, to establish the impact of reducing particle size on the amount of desalination, and the amount of n-Fe0 required to achieve a specific desalination level.

Publisher

MDPI AG

Subject

Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3