Abstract
One of the most important parts of the hydrological cycle is evapotranspiration (ET). Accurate estimates of ET in irrigated regions are critical to the planning, control, and regulation of agricultural natural resources. Accurate ET estimation is necessary for agricultural irrigation scheduling. ET is a nonlinear and complex process that cannot be calculated directly. Reference evapotranspiration (RET) and potential evapotranspiration (PET) are two primary forms of ET. The ideas, equations, and application areas for PET and RET are different. These two terms have been confused and used interchangeably by researchers. Therefore, terminology clarification is necessary to ensure their proper use. The research indicates that PET and RET concepts have a long and distinguished history. Thornthwaite devised the original PET idea, and it has been used ever since, although with several improvements. The development of RET, although initially confused with that of PET, was formally defined as a standard method. In this study, the Preferred Reporting Item for Systematic reviews and Meta-Analysis (PRISMA) was used. Equations for RET estimation were retrieved from 44 research articles, and equations for PET estimation were collected from 26 studies. Both the PET and RET equations were divided into three distinct categories: temperature-based, radiation-based, and combination-based. The results show that, among temperature-based equations for PET, Thornthwaite’s (1948) equation was mentioned in 12,117 publications, whereas among temperature-based equations for RET, Hargreaves and Samani’s (1985) equation was quoted in 3859 studies. Similarly, Priestley (1972) had the most highly cited equation in radiation-based PET equations (about 6379), whereas Ritchie (1972) had the most highly cited RET equations (around 2382) in radiation-based equations. Additionally, among combination-based PET equations, Penman and Monteith’s (1948) equations were cited in 9307 research studies, but the equations of Allen et al. (1998) were the subject of a significant number of citations from 23,000 publications. Based on application, PET is most often applied in the fields of hydrology, meteorology, and climatology, whereas RET is more frequently utilized in the fields of agronomy, agriculture, irrigation, and ecology. PET has been used to derive drought indices, whereas RET has been employed for single crop and dual crop coefficient approaches. This work examines and describes the ideas and methodologies, widely used equations, applications, and advanced approaches associated with PET and RET, and discusses future enhancements to increase the accuracy of ET calculation to attain accurate agricultural irrigation scheduling. The use of advanced tools such as remote sensing and satellite technologies, in addition to machine learning algorithms, will help to improve the accuracy of PET and RET estimates. Researchers will be able to distinguish between PET and RET in the future with the use of the study’s results.
Subject
Earth-Surface Processes,Waste Management and Disposal,Water Science and Technology,Oceanography