Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Abbas F, Afzaal H, Farooque AA, Tang S (2020) Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms. Agronomy 10:1046. https://doi.org/10.3390/agronomy10071046
2. Abyaneh HZ, Nia AM, Varkeshi MB et al (2011) Performance Evaluation of ANN and ANFIS Models for Estimating Garlic Crop Evapotranspiration. J Irrig Drain Eng 137:280–286. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000298
3. Achite M, Elshaboury N, Jehanzaib M et al (2023) Performance of Machine Learning Techniques for Meteorological Drought Forecasting in the Wadi Mina Basin, Algeria. Water 15:765. https://doi.org/10.3390/w15040765
4. Aghajanloo M-B, Sabziparvar A-A, Hosseinzadeh Talaee P (2013) Artificial neural network–genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran. Neural Comput Appl 23:1387–1393. https://doi.org/10.1007/s00521-012-1087-y
5. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO - Food and Agriculture Organization of the United Nations Rome 300(9):D05109
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献