Use of gene expression programming to predict reference evapotranspiration in different climatic conditions

Author:

Raza AliORCID,Vishwakarma Dinesh KumarORCID,Acharki SihamORCID,Al-Ansari Nadhir,Alshehri Fahad,Elbeltagi Ahmed

Abstract

AbstractEvapotranspiration plays a pivotal role in the hydrological cycle. It is essential to develop an accurate computational model for predicting reference evapotranspiration (RET) for agricultural and hydrological applications, especially for the management of irrigation systems, allocation of water resources, assessments of utilization and demand and water use allocations in rural and urban areas. The limitation of climatic data to estimate RET restricted the use of standard Penman–Monteith method recommended by food and agriculture organization (FAO-PM56). Therefore, the current study used climatic data such as minimum, maximum and mean air temperature (Tmax, Tmin, Tmean), mean relative humidity (RHmean), wind speed (U) and sunshine hours (N) to predict RET using gene expression programming (GEP) technique. In this study, a total of 17 different input meteorological combinations were used to develop RET models. The obtained results of each GEP model are compared with FAO-PM56 to evaluate its performance in both training and testing periods. The GEP-13 model (Tmax, Tmin, RHmean, U) showed the lowest errors (RMSE, MAE) and highest efficiencies (R2, NSE) in semi-arid (Faisalabad and Peshawar) and humid (Skardu) conditions while GEP-11 and GEP-12 perform best in arid (Multan, Jacobabad) conditions during training period. However, GEP-11 in Multan and Jacobabad, GEP-7 in Faisalabad, GEP-1 in Peshawar, GEP-13 in Islamabad and Skardu outperformed in testing  period. In testing phase, the GEP models R2 values reach 0.99, RMSE values ranged from 0.27 to 2.65, MAE values from 0.21 to 1.85 and NSE values from 0.18 to 0.99. The study findings indicate that GEP is effective in predicting RET when there are minimal climatic data. Additionally, the mean relative humidity was identified as the most relevant factor across all climatic conditions. The findings of this study may be used to the planning and management of water resources in practical situations, as they demonstrate the impact of input variables on the RET associated with different climatic conditions.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3