A Finite Element Investigation into the Cohesive Properties of Glass-Fiber-Reinforced Polymers with Nanostructured Interphases

Author:

Parizi Mohammad J. Ghasemi,Shahverdi HosseinORCID,Pipelzadeh Ehsan,Cabot Andreu,Guardia PabloORCID

Abstract

Glass-fiber-reinforced polymer (GFRP) composites represent one of the most exploited composites due to their outstanding mechanical properties, light weight and ease of manufacture. However, one of the main limitations of GFRP composites is their weak inter-laminar properties. This leads to resin delamination and loss of mechanical properties. Here, a model based on finite element analysis (FEA) is introduced to predict the collective advantage that a GF surface modification has on the inter-laminar properties in GFRP composites. The developed model is validated with experimental pull-out tests performed on different samples. As such, modifications were introduced using different surface coatings. Interfacial shear stress (IFSS) for each sample as a function of the GF to polymer interphase was evaluated. Adhesion energy was found by assimilating the collected data into the model. The FE model reported here is a time-efficient and low-cost tool for the precise design of novel filler interphases in GFRP composites. This enables the further development of novel composites addressing delamination issues and the extension of their use in novel applications.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

ACCIÓ

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3