Glass Fiber Reinforced Composite Orthodontic Retainer: In Vitro Effect of Tooth Brushing on the Surface Wear and Mechanical Properties

Author:

Sfondrini Maria Francesca,Vallittu Pekka Kalevi,Lassila Lippo Veli Juhana,Viola Annalisa,Gandini Paola,Scribante AndreaORCID

Abstract

Fiber reinforced composites (FRCs) are metal free materials that have many applications in dentistry. In clinical orthodontics, they are used as retainers after active treatment in order to avoid relapse. However, although the modulus of the elasticity of FRCs is low, the rigidity of the material in the form of a relatively thick retainer with a surface cover of a flowable resin composite is known to have higher structural rigidity than stainless steel splints. The aim of the present study is to measure load and bending stress of stainless steel wires, as well as flowable resin composite covered and spot-bonded FRC retainer materials after tooth brushing. These materials were tested with a three point bending test for three different conditions: no brushing, 26 min of brushing, and 60 min of brushing. SEM images were taken before and after different times of tooth brushing. Results showed that stainless steel was not significantly affected by tooth brushing. On the other hand, a significant reduction of values at maximum load at fracture was reported for both FRC groups, and uncovered FRCs were most affected. Concerning maximum bending stress, no significant reduction by pretreatment conditions was reported for the materials tested. SEM images showed no evident wear for stainless steel. Flowable resin composite covered FRCs showed some signs of composite wear, whereas spot-bonded FRCs, i.e., without the surface cover of a flowable resin composite, showed signs of wear on the FRC and exposed glass fibers from the FRC’s polymer matrix. Because of the significant changes of the reduction of maximum load values and the wear for spot-bonded FRCs, this technique needs further in vitro and in vivo tests before it can be performed routinely in clinical practice.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3