A Distributed Demand Side Energy Management Algorithm for Smart Grid

Author:

He Min-fan,Zhang Fu-xing,Huang Yong,Chen Jian,Wang Jue,Wang Rui

Abstract

This paper proposes a model predictive control (MPC) framework-based distributed demand side energy management method (denoted as DMPC) for users and utilities in a smart grid. The users are equipped with renewable energy resources (RESs), energy storage system (ESSs) and different types of smart loads. With the proposed method, each user finds an optimal operation routine in response to the varying electricity prices according to his/her own preference individually, for example, the power reduction of flexible loads, the start time of shift-able loads, the operation power of schedulable loads, and the charge/discharge routine of the ESSs. Moreover, in the method a penalty term is used to avoid large fluctuation of the user’s operation routines in two consecutive iteration steps. In addition, unlike traditional energy management methods which neglect the forecast errors, the proposed DMPC method can adapt the operation routine to newly updated data. The DMPC is compared with a frequently used method, namely, a day-ahead programming-based method (denoted as DDA). Simulation results demonstrate the efficiency and flexibility of the DMPC over the DDA method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3