Optimal Demand-Side Management Using Flat Pricing Scheme in Smart Grid

Author:

Albogamy Fahad R.,Ashfaq Yasir,Hafeez GhulamORCID,Murawwat Sadia,Khan Sheraz,Ali Faheem,Aslam Khan FarrukhORCID,Rehman KhalidORCID

Abstract

This work proposes a framework to solve demand-side management (DSM) problem by systematically scheduling energy consumption using flat pricing scheme (FPS) in smart grid (SG). The framework includes microgrid with renewable energy sources (solar and wind), energy storage systems, electric vehicles (EVs), and building appliances like time flexible, power flexible, and base/critical appliances. For the proposed framework, we develop an ant colony optimization (ACO) algorithm, which efficiently schedules smart appliances, and EVs batteries charging/discharging with microgrid and without (W/O) microgrid under FPS to minimize energy cost, carbon emission, and peak to average ratio (PAR). An integrated technique of enhanced differential evolution (EDE) algorithm and artificial neural network (ANN) is devised to predict solar irradiance and wind speed for accurate microgrid energy estimation. To endorse the applicability of the proposed framework, simulations are conducted. Moreover, the proposed framework based on the ACO algorithm is compared to mixed-integer linear programming (MILP) and W/O scheduling energy management frameworks in terms of energy cost, carbon emission, and PAR. The developed ACO algorithm reduces energy cost, PAR, and carbon emission by 23.69%, 26.20%, and 15.35% in scenario I, and 25.09%, 31.45%, and 18.50% in scenario II, respectively, as compared to W/O scheduling case. The results affirm the applicability of the proposed framework in aspects of the desired objectives.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference89 articles.

1. Energy Reports http://www.enerdata.net/enerdatauk/press-and-publication/energyfeatures/infuture-2007.php

2. Demand Response Compensation in Organized Wholesale Energymarkets, FERC Docket RM101700;FERC

3. Current status and future success of renewable energy in Pakistan

4. A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid;Ghulam;Appl. Energy,2021

5. Efficient energy management of IoT-enabled smart homes under price-based demand response program in smart grid;Ghulam;Sensors,2020

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3