Privacy-Based Demand Response Modeling for Residential Consumers Using Machine Learning with a Cloud–Fog-Based Smart Grid Environment

Author:

Reka S. Sofana1,Venugopal Prakash2ORCID,Ravi V.2ORCID,Dragicevic Tomislav3

Affiliation:

1. Centre for Smart Grid Technologies, School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India

2. School of Electronics Engineering, Vellore Institute of Technology, Chennai 600127, India

3. Department of Electrical Engineering, Technical University of Denmark, 2800 Lyngby, Denmark

Abstract

Demand response modeling in smart grids plays a significant role in analyzing and shaping the load profiles of consumers. This approach is used in order to increase the efficiency of the system and improve the performance of energy management. The use of demand response analysis in determining the load profile enhances the scheduling approach to the user profiles in the residential sector. In accordance with the behavioral pattern of the user’s profile, incentive-based demand response programs can be initiated in the residential sector. In modeling the behavioral pattern of the user’s profile, the machine learning approach is used to analyze the profile patterns. The incentive-based demand response is demonstrated in order to show the importance of maintaining the privacy of residential users, during interactions between demand- and load-profile patterns. In this work, real-time demand response modeling for residential consumers, with incentive schemes, are analyzed. The incentive schemes are proposed in order to show how the privacy of the residential units may be considered, as a result the model is developed with a two-step analysis approach. In the first step, the demand response modeling is performed with the scheduling of appliances on the residential side, by forming hubs in a cloud–fog-based smart grid environment. This process, with an incentive demand response scheme and scheduling of appliances, is performed using an optimal demand response strategy that uses a discounted stochastic game. In the second step, the privacy concerns of the demand response model from the strategy analysis are addressed using a generative adversarial network (GAN) Q-learning model and a cloud computing environment. In this work, the DR strategy model with privacy concerns for residential consumers, along with EV management, is performed in a two-step process and arrives at an optimal strategy. The efficiency and real time analysis proposed in this model are validated with real-time data analysis in simulation studies and with mathematical analysis of the proposed model.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3