Prediction of Arrival Flight Operation Strategies under Convective Weather Based on Trajectory Clustering

Author:

Wang Shijin,Chu Jiewen,Li Jiahao,Duan Rongrong

Abstract

An airport’s terminal area is the bottleneck of the air transport system. Convective weather can seriously affect the normal flight status of arrival and departure flights. At present, pilots take different flight operation strategies to avoid convective weather based on onboard radar, visual information, adverse weather experience, etc. This paper studies trajectory clustering based on the OPTICS algorithm to obtain the arrival of typical flight routes in the terminal area. Based on weather information of the planned typical flight route and flight plan information, Random Forest (RF), K-nearest Neighbor KNN (KNN), and Support Vector Machines (SVM) algorithms were used for training and establishing the Arrival Flight Operation Strategy Prediction Model (AFOSPM). In this paper, case studies of historical arrival flights in the Guangzhou (ZGGG) and Wuhan (ZHHH) terminal area were carried out. The results show that trajectory clustering results based on the OPTICS algorithm can more accurately reflect the regular flight routes of arrival flights in a terminal area. Compared to KNN and SVM, the prediction accuracy of AFOSPM based on RF is better, reaching more than 88%. On this basis, six features—including 90% VIL, weather coverage, weather duration, planned route, max VIL, and planned Arrival Gate (AF)—were used as the input features for AFOSPM, which can effectively predict various arrival flight operation strategies. For the most frequently used arrival flight operation strategies under convective weather conditions—radar guidance, AF changing, and diversion strategy—the prediction accuracy of the ZGGG and ZHHH terminal areas can exceed 95%, 85%, and 80%, respectively.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference43 articles.

1. Statistical Bulletin on the Development of Civil Aviation Industry of 2019,2020

2. Quantifying Convective Weather Impacts to Airspace Capacity: Framework and Preliminary Results

3. Statistical Bulletin on the Development of Civil Aviation Industry of 2020,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3