Terminal Traffic Situation Prediction Model under the Influence of Weather Based on Deep Learning Approaches

Author:

Yuan LigangORCID,Zeng Yang,Chen Haiyan,Jin Jiazhi

Abstract

In order to quantify the degree of influence of weather on traffic situations in real time, this paper proposes a terminal traffic situation prediction model under the influence of weather (TSPM-W) based on deep learning approaches. First, a feature set for predicting traffic situations is constructed based on data such as weather, traffic demand, delay conditions, and flow control strategies. When constructing weather data, a terminal area weather quantification method (TAWQM) is proposed to quantify various weather feature values. When constructing the traffic situation label, fuzzy C-means clustering (FCM) is used to perform cluster analysis on the traffic situation, and the traffic situation is marked as bad, average, or good. Accordingly, the multi-source data is fused as the input vector, based on the combined prediction model of convolutional neural network (CNN) and gated recurrent unit (GRU), TSPM-W is constructed. Finally, based on the historical operation data of the Guangzhou Baiyun International Airport terminal area, the proposed data set is used to predict the traffic situation time series at intervals of 1 h, 3 h, and 6 h. The comparative experimental results show that the proposed time series prediction model has higher prediction accuracy than other existing prediction methods. The proposed dataset is able to more accurately predict the traffic situation in the terminal area.

Funder

National key research and development plan of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference36 articles.

1. Classification of weather impacts on airport operations;Schultz;Proceedings of the 2019 Winter Simulation Conference (WSC),2019

2. Advanced quantification of weather impact on air traffic management;Reitmann;Proceedings of the ATM Seminar,2019

3. Clustering Days and Hours with Similar Airport Traffic and Weather Conditions

4. Classification, analysis, and prediction of the daily operations of airports using machine learning;Mangortey;Proceedings of the AIAA Scitech 2020 Forum,2020

5. Weather forecast requirements to facilitate fix-based airport ground delay programs;Hoffman;Proceedings of the 86th AMS Annual Meeting,2006

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3