Classification and Analysis of Go-Arounds in Commercial Aviation Using ADS-B Data

Author:

Kumar Satvik G.ORCID,Corrado Samantha J.ORCID,Puranik Tejas G.ORCID,Mavris Dimitri N.

Abstract

Go-arounds are a necessary aspect of commercial aviation and are conducted after a landing attempt has been aborted. It is necessary to conduct go-arounds in the safest possible manner, as go-arounds are the most safety-critical of operations. Recently, the increased availability of data, such as ADS-B, has provided the opportunity to leverage machine learning and data analytics techniques to assess aviation safety events. This paper presents a framework to detect go-around flights, identify relevant features, and utilize unsupervised clustering algorithms to categorize go-around flights, with the objective of gaining insight into aspects of typical, nominal go-arounds and factors that contribute to potentially abnormal or anomalous go-arounds. Approaches into San Francisco International Airport in 2019 were examined. A total of 890 flights that conducted a single go-around were identified by assessing an aircraft’s vertical rate, altitude, and cumulative ground track distance states during approach. For each flight, 61 features relevant to go-around incidents were identified. The HDBSCAN clustering algorithm was leveraged to identify nominal go-arounds, anomalous go-arounds, and a third cluster of flights that conducted a go-around significantly later than other go-around trajectories. Results indicate that the go-arounds detected as being anomalous tended to have higher energy states and deviations from standard procedures when compared to the nominal go-arounds during the first approach, prior to the go-around. Further, an extensive comparison of energy states between nominal flights, anomalous flights, the first approach prior to the go-around, and the second approach following the go-around is presented.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference40 articles.

1. Go-Around Decision-Making and Execution Project: Final Report to Flight Safety Foundation;Blajev,2017

2. Critical Parameter Identification for Safety Events in Commercial Aviation Using Machine Learning

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3