Improving Algorithm Conflict Resolution Manoeuvres with Reinforcement Learning

Author:

Ribeiro MartaORCID,Ellerbroek JoostORCID,Hoekstra JaccoORCID

Abstract

Future high traffic densities with drone operations are expected to exceed the number of aircraft that current air traffic control procedures can control simultaneously. Despite extensive research on geometric CR methods, at higher densities, their performance is hindered by the unpredictable emergent behaviour from surrounding aircraft. In response, research has shifted its attention to creating automated tools capable of generating conflict resolution (CR) actions adapted to the environment and not limited by man-made rules. Several works employing reinforcement learning (RL) methods for conflict resolution have been published recently. Although proving that they have potential, at their current development, the results of the practical implementation of these methods do not reach their expected theoretical performance. Consequently, RL applications cannot yet match the efficacy of geometric CR methods. Nevertheless, these applications can improve the set of rules that geometrical CR methods use to generate a CR manoeuvre. This work employs an RL method responsible for deciding the parameters that a geometric CR method uses to generate the CR manoeuvre for each conflict situation. The results show that this hybrid approach, combining the strengths of geometric CR and RL methods, reduces the total number of losses of minimum separation. Additionally, the large range of different optimal solutions found by the RL method shows that the rules of geometric CR method must be expanded, catering for different conflict geometries.

Publisher

MDPI AG

Subject

Aerospace Engineering

Reference37 articles.

1. Sesar Joint Undertaking (2020). U–Space, Supporting Safe and Secure Drone Operations in Europe, Sesar Joint Undertaking. Technical Report.

2. Wang, Z., Pan, W., Li, H., Wang, X., and Zuo, Q. (2022). Review of Deep Reinforcement Learning Approaches for Conflict Resolution in Air Traffic Control. Aerospace, 9.

3. Ribeiro, M., Ellerbroek, J., and Hoekstra, J. (2022). Distributed Conflict Resolution at High Traffic Densities with Reinforcement Learning. Aerospace, 9.

4. Designing for safety: The ‘free flight’ air traffic management concept;Hoekstra;Reliab. Eng. Syst. Saf.,2002

5. Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu, H., Gupta, A., and Abbeel, P. (2018). Soft Actor-Critic Algorithms and Applications. arXiv.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3