Review of Deep Reinforcement Learning Approaches for Conflict Resolution in Air Traffic Control

Author:

Wang ZhuangORCID,Pan Weijun,Li HuiORCID,Wang Xuan,Zuo Qinghai

Abstract

Deep reinforcement learning (DRL) has been widely adopted recently for its ability to solve decision-making problems that were previously out of reach due to a combination of nonlinear and high dimensionality. In the last few years, it has spread in the field of air traffic control (ATC), particularly in conflict resolution. In this work, we conduct a detailed review of existing DRL applications for conflict resolution problems. This survey offered a comprehensive review based on segments as (1) fundamentals of conflict resolution, (2) development of DRL, and (3) various applications of DRL in conflict resolution classified according to environment, model, algorithm, and evaluating indicator. Finally, an open discussion is provided that potentially raises a range of future research directions in conflict resolution using DRL. The objective of this review is to present a guidance point for future research in a more meaningful direction.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-organized free-flight arrival for urban air mobility;Transportation Research Part C: Emerging Technologies;2024-10

2. Analysis of the impact of traffic density on training of reinforcement learning based conflict resolution methods for drones;Engineering Applications of Artificial Intelligence;2024-07

3. Comprehensive Review of Drones Collision Avoidance Schemes: Challenges and Open Issues;IEEE Transactions on Intelligent Transportation Systems;2024-07

4. Application of Reinforcement Learning Models for Optimization of Air Traffic Control Protocols;2024 10th International Conference on Applied System Innovation (ICASI);2024-04-17

5. Graph Reinforcement Learning for Multi-Aircraft Conflict Resolution;IEEE Transactions on Intelligent Vehicles;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3