Abstract
A new SOC (State-Of-Charge)–VOC (Voltage-of-Open-Circuit) mathematical model was proposed in this paper, which is particularly useful in parallel lithium battery modeling. When the battery strings are charged in parallel connection, the batteries can be deemed as capacitors with different capacitances, and the one with larger capacitance always obtains the higher current. According to this mathematical model, the parallel battery charging with different peak capacitances can result in different voltage slew rates on different battery strings during the constant current control. Different parallel battery strings are charged with different currents, of which the battery string under higher current can induce higher power loss and higher temperature. The conventional solution can use this model to switch the constant current charging into the constant voltage charging with the correct timing to avoid overcurrent charging. Other battery pack protection methods including current sense resistor, resettable thermal cutoff device, or resettable fuse can also use this mathematical model to improve the protection. In the experiments, three kinds of batteries including LiFePO4 battery, EV Type-1 battery, and ternary battery were examined. The experiments showed good consistency with the simulation results derived from the mathematical model.
Funder
Ministry of Science and Technology, R.O.C
Ministry of Science and Technology, Taiwan
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献