Biochemical Characteristics of Acid-Soluble Collagen from Food Processing By-Products of Needlefish Skin (Tylosurus acus melanotus)

Author:

Ramle Siti Zulaikha,Oslan Siti Nur HazwaniORCID,Shapawi RossitaORCID,Mokhtar Ruzaidi Azli MohdORCID,Noordin Wan Norhana Md.,Huda NurulORCID

Abstract

The by-product of needlefish (Tylosurus acus melanotus) waste possesses important characteristics that could be used in food applications. Fish by-product collagen may be used in place of mammalian collagen due to ethical and religious considerations over environmental degradation. Different forms of acid-soluble collagen (ASC) were successfully extracted from needlefish skin. Based on dry weight, the collagen extracted using acetic acid (AAC), lactic acid (LAC), and citric acid (CAC) treatments was 3.13% with a significantly difference (p < 0.05), followed by 0.56% and 1.03%, respectively. Based on proximate analysis, the needlefish skin composition was found to be significantly different (p < 0.05) between compositions, with the highest moisture content at 61.65%, followed by protein (27.39%), fat (8.59%), and ash (2.16%). According to the SDS-PAGE results, all extracted collagen were identified as a type 1 collagen. Additionally, ATR-FTIR revealed that all collagens had amide A, B, amide I, II, and III peaks. AAC significantly outperforms LAC and CAC in terms of yield following physicochemical characterisation, including pH determination, colour (L* value), and hydroxyproline content. All collagens demonstrated strong heat resistance and structural stability with Tmax above 38 °C. Collagen was most soluble at pH 5 for AAC, pH 3 for LAC, and pH 7 for CAC. The effect of collagen solubility on NaCl concentration was discovered to be significantly reduced to 50 g/L for all collagen samples. All collagens can be used as alternatives to terrestrial collagen in a diverse range of applications.

Funder

Malaysian Ministry of Higher Education

Research Management Centre

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3