3D-Printed Polyester-Based Prototypes for Cosmetic Applications—Future Directions at the Forensic Engineering of Advanced Polymeric Materials

Author:

Rydz JoannaORCID,Sikorska Wanda,Musioł Marta,Janeczek Henryk,Włodarczyk Jakub,Misiurska-Marczak Marlena,Łęczycka Justyna,Kowalczuk Marek

Abstract

Knowledge of degradation and impairment phenomena of (bio)degradable polymeric materials under operating conditions, and thus the selection of test procedures and prediction of their behavior designates the scope and capabilities as well as possible limitations of both: the preparation of the final product and its durability. The main novelty and objective of this research was to determine the degradation pathways during testing of polylactide and polylactide/polyhydroxyalkanoate materials made with three-dimensional printing and the development of a new strategy for the comprehensive characterization of such complex systems including behavior during waste disposal. Prototype objects were subjected to tests for damage evolution performed under simulating operating conditions. The reference samples and the tested items were characterized by gel permeation chromatography and differential scanning calorimetry to determine changes in material properties. The studies showed that: polyhydroxyalkanoate component during accelerated aging and degradation in environments rich in microorganisms accelerated the degradation of the material; paraffin accelerates polylactide degradation and slows degradation of polyhydroxyalkanoate-based material; under the influence of an environment rich in enzymes, paraffin contamination accelerates biodegradation; under the influence of natural conditions, paraffin contamination slowed degradation; the processing conditions, in particular the printing orientation of individual parts of the container, influenced the material properties in its various regions, affecting the rate of degradation of individual parts.

Publisher

MDPI AG

Subject

General Materials Science

Reference48 articles.

1. EU Regulation: Packaging is a New “Cosmetic Ingredient” https://knowledge.ulprospector.com/5688/pcc-eu-regulation-packaging-new-cosmetic-ingredient/

2. Forensic Engineering of Advanced Polymeric Materials. Part 1 – Degradation Studies of Polylactide Blends with Atactic Poly[(R,S)-3-hydroxybutyrate] in Paraffin

3. Degradation of polylactide in paraffin and selected protic media

4. Plastics recycling: challenges and opportunities

5. Biopolymers: Applications and Trends;Niaounakis,2015

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3