Three-Dimensional Printing of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] Biodegradable Scaffolds: Properties, In Vitro and In Vivo Evaluation

Author:

Shishatskaya Ekaterina I.12ORCID,Demidenko Aleksey V.12,Sukovatyi Aleksey G.1,Dudaev Alexey E.12ORCID,Mylnikov Aleksey V.3,Kisterskij Konstantin A.2ORCID,Volova Tatiana G.12

Affiliation:

1. Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Akademgorodok, 50/50, 660036 Krasnoyarsk, Russia

2. School of Fundamental Biology and Biotechnology, Siberian Federal University, Svobodnyi Av. 79, 660041 Krasnoyarsk, Russia

3. Clinical Hospital “RZD-Medicine”, Lomonosov Street, 47, 660058 Krasnoyarsk, Russia

Abstract

The results of constructing 3D scaffolds from degradable poly(3-hydrosbutyrpate-co-3-hydroxyvalerate) using FDM technology and studying the structure, mechanical properties, biocompatibility in vitro, and osteoplastic properties in vivo are presented. In the process of obtaining granules, filaments, and scaffolds from the initial polymer material, a slight change in the crystallization and glass transition temperature and a noticeable decrease in molecular weight (by 40%) were registered. During the compression test, depending on the direction of load application (parallel or perpendicular to the layers of the scaffold), the 3D scaffolds had a Young’s modulus of 207.52 ± 19.12 and 241.34 ± 7.62 MPa and compressive stress tensile strength of 19.45 ± 2.10 and 22.43 ± 1.89 MPa, respectively. SEM, fluorescent staining with DAPI, and calorimetric MTT tests showed the high biological compatibility of scaffolds and active colonization by NIH 3T3 fibroblasts, which retained their metabolic activity for a long time (up to 10 days). The osteoplastic properties of the 3D scaffolds were studied in the segmental osteotomy test on a model defect in the diaphyseal zone of the femur in domestic Landrace pigs. X-ray and histological analysis confirmed the formation of fully mature bone tissue and complete restoration of the defect in 150 days of observation. The results allow us to conclude that the constructed resorbable 3D scaffolds are promising for bone grafting.

Funder

State Assignment of the Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3