Increasing Wood δ15N in Response to Pig Manure Application

Author:

Camarero Jesús JulioORCID,Gazol Antonio,González de Andrés Ester,Valeriano CristinaORCID,Igual José M.ORCID,Causapé Jesús

Abstract

Intensive livestock management impacts forest and trees in different ways. Pig manure is a major source of nitrogen (N) pollution of surface and ground waters in some European regions such as north-eastern Spain, but it is understudied how manure application impacts agroforestry systems. How pig manure affects tree radial growth and the N cycle was assessed by measuring N concentrations in soil, leaves and wood and δ15N in tree-ring wood in two tree species widely planted for agricultural (Prunus dulcis) and reforestation (Pinus halepensis) purposes in the study area. Soil physicochemical characteristics and the biomass and structure of major soil microbial groups were also measured. Trees irrigated with pig effluent (manure application) and control trees not subjected to manure application were compared. Soil N, phosphorus (P) and potassium (K) concentrations of fertilized trees increased, but soil microbiota biomass decreased. Similar growth between fertilized and non-fertilized pine trees was found, but lower growth in fertilized almond trees was observed. Leaf N concentrations decreased but δ15N wood increased in trees subjected to pig manure application. Pig manure application alters the N cycling in the soil and within trees.

Funder

Ministerio de Ciencia, Innovación y Universidades

Junta de Castilla y León

European Union

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3