Interactions between Climate and Nutrient Cycles on Forest Response to Global Change: The Role of Mixed Forests

Author:

González de Andrés Ester

Abstract

Forest ecosystems are undergoing unprecedented changes in environmental conditions due to global change impacts. Modification of global biogeochemical cycles of carbon and nitrogen, and the subsequent climate change are affecting forest functions at different scales, from physiology and growth of individual trees to cycling of nutrients. This review summarizes the present knowledge regarding the impact of global change on forest functioning not only with respect to climate change, which is the focus of most studies, but also the influence of altered nitrogen cycle and the interactions among them. The carbon dioxide (CO2) fertilization effect on tree growth is expected to be constrained by nutrient imbalances resulting from high N deposition rates and the counteractive effect of increasing water deficit, which interact in a complex way. At the community level, responses to global change are modified by species interactions that may lead to competition for resources and/or relaxation due to facilitation and resource partitioning processes. Thus, some species mixtures can be more resistant to drought than their respective pure forests, albeit it depends on environmental conditions and species’ functional traits. Climate change and nitrogen deposition have additional impacts on litterfall dynamics, and subsequent decomposition and nutrient mineralization processes. Elemental ratios (i.e., stoichiometry) are associated with important ecosystem traits, including trees’ adaptability to stress or decomposition rates. As stoichiometry of different ecosystem components are also influenced by global change, nutrient cycling in forests will be altered too. Therefore, a re-assessment of traditional forest management is needed in order to cope with global change. Proposed silvicultural systems emphasize the key role of diversity to assure multiple ecosystem services, and special attention has been paid to mixed-species forests. Finally, a summary of the patterns and underlying mechanisms governing the relationships between diversity and different ecosystems functions, such as productivity and stability, is provided.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3