The global nitrogen cycle in the twenty-first century

Author:

Fowler David1,Coyle Mhairi1,Skiba Ute1,Sutton Mark A.1,Cape J. Neil1,Reis Stefan1,Sheppard Lucy J.1,Jenkins Alan1,Grizzetti Bruna2,Galloway James N.3,Vitousek Peter4,Leach Allison3,Bouwman Alexander F.5,Butterbach-Bahl Klaus6,Dentener Frank7,Stevenson David8,Amann Marcus9,Voss Maren10

Affiliation:

1. NERC Centre for Ecology and Hydrology, Penicuik, UK

2. CNRS, University Pierre et Marie Curie (UPMC), Paris, France

3. Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA

4. Department of Biogeochemistry, Stanford University, Stanford, CA, USA

5. PBL Netherlands Environmental Assessment Agency, Utrecht University, Utrecht, The Netherlands

6. Institute for Meteorology and Climate Research (IMK-IFU), Garmisch-Partenkirchen, Germany

7. European Commission, Joint Research Centre, Ispra, Italy

8. School of Geosciences, University of Edinburgh, Edinburgh, UK

9. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria

10. Leibniz Institute of Baltic Sea Research, Warnemünde, Rostock, Germany

Abstract

Global nitrogen fixation contributes 413 Tg of reactive nitrogen (N r ) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic N r are on land (240 Tg N yr −1 ) within soils and vegetation where reduced N r contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer N r contribute to nitrate (NO 3 ) in drainage waters from agricultural land and emissions of trace N r compounds to the atmosphere. Emissions, mainly of ammonia (NH 3 ) from land together with combustion related emissions of nitrogen oxides (NO x ), contribute 100 Tg N yr −1 to the atmosphere, which are transported between countries and processed within the atmosphere, generating secondary pollutants, including ozone and other photochemical oxidants and aerosols, especially ammonium nitrate (NH 4 NO 3 ) and ammonium sulfate (NH 4 ) 2 SO 4 . Leaching and riverine transport of NO 3 contribute 40–70 Tg N yr −1 to coastal waters and the open ocean, which together with the 30 Tg input to oceans from atmospheric deposition combine with marine biological nitrogen fixation (140 Tg N yr −1 ) to double the ocean processing of N r . Some of the marine N r is buried in sediments, the remainder being denitrified back to the atmosphere as N 2 or N 2 O. The marine processing is of a similar magnitude to that in terrestrial soils and vegetation, but has a larger fraction of natural origin. The lifetime of N r in the atmosphere, with the exception of N 2 O, is only a few weeks, while in terrestrial ecosystems, with the exception of peatlands (where it can be 10 2 –10 3 years), the lifetime is a few decades. In the ocean, the lifetime of N r is less well known but seems to be longer than in terrestrial ecosystems and may represent an important long-term source of N 2 O that will respond very slowly to control measures on the sources of N r from which it is produced.

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3