Novel Hybrid PETG Composites for 3D Printing

Author:

Kováčová MáriaORCID,Kozakovičová Jana,Procházka Michal,Janigová Ivica,Vysopal Marek,Černičková Ivona,Krajčovič Jozef,Špitalský ZdenkoORCID

Abstract

This paper is focused on the preparation of novel hybrid polymer composite materials for 3D filaments. As the reinforcing filler, expanded graphite, carbon fibers, and combinations thereof were used in various ratios up to 10%. The mechanical and thermal properties of virgin and recycled polyethylene phthalate glycol-modified (PETG) composite materials were determined. Almost all prepared composite materials were suitable for 3D printing and they have enhanced mechanical properties compared to the neat PETG matrices. Addition of the fillers to both polymer matrices has an only slight effect on the thermal stability, but the addition of carbon fibers significantly reduced the thermal expansion coefficient. The composites from cheaper recycled PETG have comparable properties to virgin PETG composites, which is of economic and ecological importance. New and cheaper materials can help expand 3D printing to manufacturing plants and the use of 3D printers for special applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3