Sustainable polymer reclamation: recycling poly(ethylene terephthalate) glycol (PETG) for 3D printing applications

Author:

Seno Flores João Daniel,de Assis Augusto Thiago,Lopes Vieira Cunha Daniel Aparecido,Gonçalves Beatrice Cesar Augusto,Henrique Backes EduardoORCID,Costa Lidiane Cristina

Abstract

AbstractDue to their versatile properties and wide-ranging applications across various industries, including manufacturing, polymers are indispensable for today’s society. However, polymer-based products significantly impact the environment since many are single-used plastics and require a long time to degrade naturally. A method to attenuate end-of-life polymers’ ill effects is recycling them to bring them again into the production cycle, from grave to cradle. This investigation involves recycling PETG sheets used in face shield production during the COVID-19 outbreak to fabricate 3D printing filaments for FFF. We assessed poly(ethylene terephthalate) glycol (PETG) processability to up to five recycling cycles and obtained filaments with properties adequate for 3D printing. Rheological, thermal, morphological, and mechanical characterization were analyzed to verify the effect of the number of processing cycles on the properties of the polymer. The recycling cycles originated a decrease in viscosity and elasticity, and the gain in molecular mobility resulted, relatively, in solids with a higher degree of crystallinity and prints with more elliptical depositions. The mechanical properties of printed parts fabricated of recycled material were comparable to those from commercial filament, especially after three extrusion cycles. Both extrusion and additive manufacturing processes successfully recycle material into filaments and printed parts, indicating that the proposed methodology is a promising alternative to bring value back to polymers from solid waste.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3