Review of GaN Thin Film and Nanorod Growth Using Magnetron Sputter Epitaxy

Author:

Prabaswara AdityaORCID,Birch JensORCID,Junaid Muhammad,Serban Elena Alexandra,Hultman Lars,Hsiao Ching-LienORCID

Abstract

Magnetron sputter epitaxy (MSE) offers several advantages compared to alternative GaN epitaxy growth methods, including mature sputtering technology, the possibility for very large area deposition, and low-temperature growth of high-quality electronic-grade GaN. In this article, we review the basics of reactive sputtering for MSE growth of GaN using a liquid Ga target. Various target biasing schemes are discussed, including direct current (DC), radio frequency (RF), pulsed DC, and high-power impulse magnetron sputtering (HiPIMS). Examples are given for MSE-grown GaN thin films with material quality comparable to those grown using alternative methods such as molecular-beam epitaxy (MBE), metal–organic chemical vapor deposition (MOCVD), and hydride vapor phase epitaxy (HVPE). In addition, successful GaN doping and the fabrication of practical devices have been demonstrated. Beyond the planar thin film form, MSE-grown GaN nanorods have also been demonstrated through self-assembled and selective area growth (SAG) method. With better understanding in process physics and improvements in material quality, MSE is expected to become an important technology for the growth of GaN.

Funder

Energimyndigheten

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3