Targeted Rock Slope Assessment Using Voxels and Object-Oriented Classification

Author:

Farmakis Ioannis,Bonneau DavidORCID,Hutchinson D. Jean,Vlachopoulos Nicholas

Abstract

Reality capture technologies, also known as close-range sensing, have been increasingly popular within the field of engineering geology and particularly rock slope management. Such technologies provide accurate and high-resolution n-dimensional spatial representations of our physical world, known as 3D point clouds, that are mainly used for visualization and monitoring purposes. To extract knowledge from point clouds and inform decision-making within rock slope management systems, semantic injection through automated processes is necessary. In this paper, we propose a model that utilizes a segmentation procedure which delivers segments ready to classify and be retained or rejected according to complementary knowledge-based filter criteria. First, we provide relevant voxel-based features based on the local dimensionality, orientation, and topology and partition them in an assembly of homogenous segments. Subsequently, we build a decision tree that utilizes geometrical, topological, and contextual information and enables the classification of a multi-hazard railway rock slope section in British Columbia, Canada into classes involved in landslide risk management. Finally, the approach is compared to machine learning integrating recent featuring strategies for rock slope classification with limited training data (which is usually the case). This alternative to machine learning semantic segmentation approaches reduces substantially the model size and complexity and provides an adaptable framework for tailored decision-making systems leveraging rock slope semantics.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3