Superpixel and Supervoxel Segmentation Assessment of Landslides Using UAV-Derived Models

Author:

Farmakis IoannisORCID,Karantanellis Efstratios,Hutchinson D. Jean,Vlachopoulos Nicholas,Marinos VassilisORCID

Abstract

Reality capture technologies such as Structure-from-Motion (SfM) photogrammetry have become a state-of-the-art practice within landslide research workflows in recent years. Such technology has been predominantly utilized to provide detailed digital products in landslide assessment where often, for thorough mapping, significant accessibility restrictions must be overcome. UAV photogrammetry produces a set of multi-dimensional digital models to support landslide management, including orthomosaic, digital surface model (DSM), and 3D point cloud. At the same time, the recognition of objects depicted in images has become increasingly possible with the development of various methodologies. Among those, Geographic Object-Based Image Analysis (GEOBIA) has been established as a new paradigm in the geospatial data domain and has also recently found applications in landslide research. However, most of the landslide-related GEOBIA applications focus on large scales based on satellite imagery. In this work, we examine the potential of different UAV photogrammetry product combinations to be used as inputs to image segmentation techniques for the automated extraction of landslide elements at site-specific scales. Image segmentation is the core process within GEOBIA workflows. The objective of this work is to investigate the incorporation of fully 3D data into GEOBIA workflows for the delineation of landslide elements that are often challenging to be identified within typical rasterized models due to the steepness of the terrain. Here, we apply a common unsupervised image segmentation pipeline to 3D grids based on the superpixel/supervoxel and graph cut algorithms. The products of UAV photogrammetry for two landslide cases in Greece are combined and used as 2D (orthomosaic), 2.5D (orthomosaic + DSM), and 3D (point cloud) terrain representations in this research. We provide a detailed quantitative comparative analysis of the different models based on expert-based annotations of the landscapes and conclude that using fully 3D terrain representations as inputs to segmentation algorithms provides consistently better landslide segments.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3