Accuracy of Rockfall Volume Reconstruction from Point Cloud Data—Evaluating the Influences of Data Quality and Filtering

Author:

Walton Gabriel,Weidner Luke

Abstract

Rockfall processes are now commonly studied through monitoring campaigns using repeat lidar scanning. Accordingly, several recent studies have evaluated how the temporal resolution of data collection and various data-processing decisions can influence the apparent rockfall volumes estimated using typical rockfall database creation workflows. However, there is a lack of studies that consider how data quality and associated data-processing decisions influence rockfall volume estimation. In this work, we perform a series of tests based on an existing reference rockfall database from the Front Range of Colorado, USA, to isolate the influences of data resolution (point spacing), individual point precision, and the filter threshold applied to change results, on the volume estimates obtained for rockfalls. While the effects of individual point precision were found to be limited for typical levels of gaussian noise (standard deviation per coordinate direction ≤ 0.02 m), data resolution and change filter threshold were found to have systematic impacts on volume estimates, with the volume estimates for the smallest rockfalls decreasing substantially with increases in point spacing and change filter threshold. Because these factors disproportionately impact volume estimates for smaller rockfalls, when these factors change, the slope of the apparent power law that describes the relative frequency-volume distribution of rockfalls changes. Evidence is presented that suggests that this phenomenon can explain discrepancies between power law slopes presented in the literature based on studies focused on different scales of rockfall activity. Overall, this study demonstrates the impacts of raw data attributes on rockfall volume estimation and presents an additional effect that tends to bias rockfall frequency–magnitude power law relationships towards underestimation of the relative prevalence of small rockfalls.

Funder

Colorado Department of Transportation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3