Classroom Attendance Systems Based on Bluetooth Low Energy Indoor Positioning Technology for Smart Campus

Author:

Puckdeevongs Apiruk,Tripathi N. K.,Witayangkurn ApichonORCID,Saengudomlert Poompat

Abstract

Student attendance during classroom hours is important, because it impacts the academic performance of students. Consequently, several universities impose a minimum attendance percentage criterion for students to be allowed to attend examinations; therefore, recording student attendance is a vital task. Conventional methods for recording student attendance in the classroom, such as roll-call and sign-in, are an inefficient use of instruction time and only increase teachers’ workloads. In this study, we propose a Bluetooth Low Energy-based student positioning framework for automatically recording student attendance in classrooms. The proposed architecture consists of two components, an indoor positioning framework within the classroom and student attendance registration. Experimental studies using our method show that the Received Signal Strength Indicator fingerprinting technique that is used in indoor scenarios can achieve satisfactory positioning accuracy, even in a classroom environment with typically high signal interference. We intentionally focused on designing a basic system with simple indoor devices based on ubiquitous Bluetooth technology and integrating an attendance system with computational techniques in order to minimize operational costs and complications. The proposed system is tested and demonstrated to be usable in a real classroom environment at Rangsit University, Thailand.

Publisher

MDPI AG

Subject

Information Systems

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Attendance Management: A Smart Bluetooth-Based System for Seamless Monitoring and Automation;2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon);2024-04-25

2. Design and implementation of efficient automatic attendance record system based on facial recognition technique;AIP Conference Proceedings;2024

3. Development of an Android-Based Attendance and Academic Progress Tracking System with Parent Interaction;2023 6th International Conference on Recent Trends in Advance Computing (ICRTAC);2023-12-14

4. Digital innovations in higher education management and mechanisms for high-quality training of students;Applied Mathematics and Nonlinear Sciences;2023-12-13

5. Architecture for Inspecting Bluetooth Traffic in Software-Defined Networks;2023 22nd RoEduNet Conference: Networking in Education and Research (RoEduNet);2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3